114 research outputs found

    Stratigraphy and age of the Cappadocia ignimbrites, Turkey: reconciling field constraints with paleontologic, radiochronologic, geochemical and paleomagnetic data

    Get PDF
    The stratigraphy and age of the Neogene Cappadocia ignimbrites (Central Turkey) have been inferred in previous studies from fieldwork and K–Ar age determinations. The resulting stratigraphic schemes, however, differed from each other, suggesting that further studies were required to produce a reliable succession. In this paper, we examine the chronostratigraphy of mammalian remains recovered in the continental sediments interbedded with the Cappadocia ignimbrites. Using recent advances in mammalian chronostratigraphy, we evaluate selected taxa and faunal associations to place new and independent constraints on the ignimbrite ages. The biostratigraphically bracketed ages concur with some published radiometric dates, but they disagree with others, principally at localities where major stratigraphic discrepancies have arisen in the literature. In order to reconcile these apparent inconsistencies, we combine, at selected sites, our field observations with the biostratigraphic and radiometric age limits, and we compare these with the available geochemical and magnetic data. This allows us to present revised age estimates, and a revised stratigraphy which includes the correlation of the local Sofular deposits with the large-volume Gördeles ignimbrite. The issues faced in this study apply to other ignimbrite provinces in the world. For instance, ignimbrite eruption frequency in Cappadocia is higher than the resolution of many published K–Ar ages. Furthermore, different K–Ar ages have led to the description of individual and distinct ignimbrites that fieldwork and geochemical data allow to merge into a single ignimbrite. Argon loss from pumice samples leading to radiometric “rejuvenation” provides a likely explanation for most stratigraphic discrepancies. Cappadocia is the only documented ignimbrite field in which the chronostratigraphy of vertebrate remains provides better constraints on some ignimbrite ages than scattered K–Ar dates. We further argue that K–Ar dates from the Cappadocia area are too imprecise to establish a reliable magnetostratigraphic scheme for the ignimbrite succession, with the exception of the not, vert, similar2.8 Ma Valibaba Tepe ignimbrite

    Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section (northwest China)

    Get PDF
    The Tian Shan Mountains constitute central Asia's longest and highest mountain range. Understanding their Cenozoic uplift history thus bears on mountain building processes in general, and on how deformation has occurred under the influence of the India-Asia collision in particular. In order to help decipher the uplift history of the Tian Shan, we collected 970 samples for magnetostratigraphic analysis along a 4571-m-thick section at the Jingou River (Xinjiang Province, China). Stepwise alternating field and thermal demagnetization isolate a linear magnetization component that is interpreted as primary. From this component, a magnetostratigraphic column composed of 67 polarity chrons are correlated with the reference geomagnetic polarity timescale between ∌1 Ma and ∌23.6 Ma, with some uncertainty below ∌21 Ma. This correlation places precise temporal control on the Neogene stratigraphy of the southern Junggar Basin and provides evidence for two significant stepwise increases in sediment accumulation rate at ∌16–15 Ma and ∌11–10 Ma. Rock magnetic parameters also undergo important changes at ∌16–15 Ma and ∌11–10 Ma that correlate with changes in sedimentary depositional environments. Together with previous work, we conclude that growth history of the modern Tian Shan Mountains includes two pulses of uplift and erosion at ∌16–15 Ma and ∌11–10 Ma. Middle to upper Tertiary rocks around the Tian Shan record very young (<∌5 Ma) counterclockwise paleomagnetic rotations, on the order of 15° to 20°, which are interpreted as because of strain partitioning with a component of sinistral shear that localized rotations in the piedmont

    Oligo-Miocene magnetostratigraphy and rock magnetism of the Xishuigou section, Subei (Gansu Province, western China) and implications for shallow inclinations in central Asia.

    Get PDF
    Magnetostratigraphy of 222 remanent directions together with late Oligocene to early Miocene mammal and charophyte paleontology suggest that 2179 m of the Xishuigou section (Subei, Gansu Province, China) were deposited from ~26 to ~19 Ma. Stratigraphic patterns of bulk susceptibility, anisotropy of magnetic susceptibility parameters, and natural and anhysteretic remanent magnetization intensities demonstrate that (1) faulting does not significantly affect the record, (2) sediment deposition was relatively continuous, (3) sediment source changed around 23 Ma, and (4) rapid uplift near Subei occurred at 21 Ma. Subei rotated 27° ± 5° counterclockwise with respect to the 20 Ma pole from the Eurasian synthetic apparent polar wander path. Folding and rotation of the section took place after 19 Ma. The paleolatitude of Subei is 14° less than at present and 19° ± 3° less than predicted from the reference pole. Both rock magnetic and paleomagnetic data sets suggest that the unusually low paleolatitude is the result of synsedimentary inclination shallowing, a phenomenon which has likely affected other paleomagnetic data from central Asia
    • 

    corecore